The Development of a Fine Resolution, Continental Scale Forest Monitoring System using SAR Imagery

Bruce Chapman
Jet Propulsion Laboratory

Players and Partners

Processing

NASDA/Earth Observation Research Center (M. Shimada)

" NASDA/Earth Observation Research Center (A. Rosenqvist)

NASA/JPL (S. Saatchi)

EC/JRC (F. Degrandi)

" Users

UC Santa Barbara (L. Hess)

Max Planck Institute for Biogeochemistry (R. Zimmermann)

INPE (L. Dutra)

UMD (S. Prince)

Others...

USDA - Int. Inst. of Tropical Forestry (E. Helmer)

Objectives of the Study

Prototype inexpensive SAR processing

ALOS

- NASDA mission
- L-band polarimetric SAR
- Two optical instruments
- Launch: 2003
- Two data relay satellites
- ALOS Research proposal accepted

Image all of South America every 3 weeks for duration of mission

Objectives of the Study

Complete L-band Radar image of forested areas in South America (93-96)

Multiple coverage by JERS-1 SAR in most locations

Objectives of the Study Simple land cover map

ALOS SAR will be better at discriminating some classes than JERS

Objectives of the Study

Fill in gaps in Landsat coverage

ALOS will acquire data over all of South America every three weeks.

Science Implications

Regional Wetland Mapping

Jau River, 1995-1996

Rosenqvist et al, 1999

Science Implications

Land Cover Change

JERS-1 radar image change detection

Comparison Sept 1995 / May 1996

yellow: 2db brighter

purple: no change

green: 2db darker

Heritage of the Research

GRFM / JAMMS project

Methods

Simple land cover classes

L-band radar is sensitive to forest structure and the resulting scattering mechanism

- diffuse scattering: Forest (-5.5 to -8.5 db)
- specular scattering : non-forest/water (darker than -9 db)
- double bounce : flooded forest (brighter than -5 db)

these scattering mechanisms result in distinct radar backscatter values

- Classification can be performed at time of processing.
- Dual Pol ALOS will be better at distinguishing scattering mechanisms.

Methods

Raw signal processing

COTS software

control of processing priority and quality strip map processing

mosaicking integrated into processing classification integrated into processing multiple output products

- projection (geographic, UTM, WRS), resolution
- processing benchmark for future systems

Methods

- Experimental ALOS prototype measurements
 - Change detection
 - Interferometry processing
 - Terrain correction
 - **Biomass**
 - Biomass from derived structure
 - Measurement confusion
 - double bounce (flooded forest)
 - low vegetation specular scatter (influenced by soil moisture) moisture in canopy
 - Dual pol L-band on ALOS can eliminate some of this confusion

Data Plan

Work Schedule

- Year 1 (00-01):
 integrate hardware and software components
 test processing
 Year 2 (01-02):
 - operational processing testing and validation of derived products
- Year 3 (02-03):
 completion of image processing
- Year 4: ALOS is launched (June 2003)